Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Microorganisms ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543500

RESUMO

The aim of this study was to describe epidemiological characteristics and perform SARS-CoV-2 genomic surveillance in the southeastern region of São Paulo State. During the first months of 2022, we compared weekly SARS-CoV-2 infection prevalence considering age, Ct value, and variants' lineages. An increase in the number of SARS-CoV-2-positive cases until the fourth epidemiological week of 2022 was observed. From the fourth epidemiological week onwards, the number of tests for SARS-CoV-2 diagnosis began to decrease, but the number of positive samples for SARS-CoV-2 remained high, reaching its most expressive level with a rate of 60% of infected individual cases. In this period, we observed a progressive increase in SARS-CoV-2 infection within the 0-10 age group throughout the epidemiological weeks, from 2.8% in the first epidemiological week to 9.2% in the eighth epidemiological week of 2022. We further observed significantly higher Ct values within younger patient samples compared to other older age groups. According to lineage assignment, SARS-CoV-2 (BA.1) was the most prevalent (74.5%) in the younger group, followed by BA.1.1 (23%), BA.2 (1.7%), and Delta (1%). Phylogenetic analysis showed that BA.2 sequences clustered together, indicating sustained transmission of this Omicron VOC sub-lineage by that time. Our results suggest the initial dissemination steps of the Omicron's sub-linage BA.2 into the younger group, due to specific genomic features of the detected sequences. These data provide interesting results related to the spread, emergence, and evolution of the Omicron variant in the southeast Brazilian population.

2.
Pathogens ; 13(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38535545

RESUMO

This report provides a detailed overview of the resurgence of DENV-3 in the state of Minas Gerais, Brazil, which is a concerning scenario in the context of dengue, a mosquito-borne viral disease. Historically, Brazil has grappled with dengue epidemics caused primarily by the DENV-1 and DENV-2 serotypes. However, in 2023, a significant shift in this pattern was observed as DENV-3 made a notable resurgence. This resurgence was characterized by the increase in DENV-3 cases within the country and the region of the Americas. Given the absence of sustained DENV-3 circulation in Brazil in previous years, this situation poses a significant risk, making the population highly susceptible to a potential novel epidemic. In November 2023, a 31-year-old male patient in Belo Horizonte exhibited symptoms of acute febrile syndrome. Multiplex RT-qPCR using the Kit Molecular ZC D-Tipagem confirmed DENV-3 infection, suggesting a likely autochthonous case, as the patient reported no travel history. To promptly assess this resurgence, we applied the nanopore sequencing technology. This allowed for the rapid characterization of the initial DENV-3 case isolated in Minas Gerais in 2023, representing a 13-year interval since the serotype's previous documented circulation in that state. This case report underscores the critical importance of proactive monitoring and the swift implementation of targeted control strategies to address the evolving dynamics of dengue, with a specific emphasis on the resurgence of DENV-3 in the state.

3.
medRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405721

RESUMO

We employ a multidisciplinary approach, integrating genomics and epidemiology, to uncover recent dengue virus transmission dynamics in the Dominican Republic. Our results highlight a previously unknown north-south transmission pathway within the country, with the co-circulation of multiple virus lineages. Additionally, we examine the historical climate data, revealing long-term trends towards higher theoretical potential for dengue transmission due to rising temperatures. These findings provide information for targeted interventions and resource allocation, informing as well towards preparedness strategies for public health agencies in mitigating climate and geo-related dengue risks.

4.
Viruses ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399947

RESUMO

Nipah virus (NiV), a biosafety level 4 agent, was first identified in human clinical cases during an outbreak in 1998 in Malaysia and Singapore. While flying foxes are the primary host and viral vector, the infection is associated with a severe clinical presentation in humans, resulting in a high mortality rate. Therefore, NiV is considered a virus with an elevated epidemic potential which is further underscored by its recent emergence (September 2023) as an outbreak in India. Given the situation, it is paramount to understand the molecular dynamics of the virus to shed more light on its evolution and prevent potential future outbreaks. In this study, we conducted Bayesian phylogenetic analysis on all available NiV complete genomes, including partial N-gene NiV sequences (≥1000 bp) in public databases since the first human case, registered in 1998. We observed the distribution of genomes into three main clades corresponding to the genotypes Malaysia, Bangladesh and India, with the Malaysian clade being the oldest in evolutionary terms. The Bayesian skyline plot showed a recent increase in the viral population size since 2019. Protein analysis showed the presence of specific protein families (Hendra_C) in bats that might keep the infection in an asymptomatic state in bats, which also serve as viral vectors. Our results further indicate a shortage of complete NiV genomes, which would be instrumental in gaining a better understanding of NiV's molecular evolution and preventing future outbreaks. Our investigation also underscores the critical need to strengthen genomic surveillance based on complete NiV genomes that will aid thorough genetic characterization of the circulating NiV strains and the phylogenetic relationships between the henipaviruses. This approach will better prepare us to tackle the challenges posed by the NiV virus and other emerging viruses.


Assuntos
Quirópteros , Infecções por Henipavirus , Vírus Nipah , Animais , Humanos , Vírus Nipah/genética , Filogenia , Teorema de Bayes , Variação Genética
5.
Emerg Infect Dis ; 30(2): 310-320, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270216

RESUMO

We generated 238 Zika virus (ZIKV) genomes from 135 persons in Brazil who had samples collected over 1 year to evaluate virus persistence. Phylogenetic inference clustered the genomes together with previously reported ZIKV strains from northern Brazil, showing that ZIKV has been remained relatively stable over time. Temporal phylogenetic analysis revealed limited within-host diversity among most ZIKV-persistent infected associated samples. However, we detected unusual virus temporal diversity from >5 persons, uncovering the existence of divergent genomes within the same patient. All those patients showed an increase in neutralizing antibody levels, followed by a decline at the convalescent phase of ZIKV infection. Of interest, in 3 of those patients, titers of neutralizing antibodies increased again after 6 months of ZIKV infection, concomitantly with real-time reverse transcription PCR re-positivity, supporting ZIKV reinfection events. Altogether, our findings provide evidence for the existence of ZIKV reinfection events.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Infecção por Zika virus/epidemiologia , Formação de Anticorpos , Brasil/epidemiologia , Filogenia , Reinfecção , Anticorpos Neutralizantes
6.
Viruses ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38257783

RESUMO

In recent months, Paraguay has been grappled with a notable monkeypox outbreak, straining its healthcare infrastructure. The sudden spike in cases underlines the imperative need for a comprehensive understanding of the virus's dynamics, enabling the formulation of robust containment measures. To address this challenge, our team joined forces with the Central Public Health Laboratory of Asunción and the Pan-American Health Organization. Through this collaboration, we employed portable whole-genome sequencing combined with phylodynamic analysis to examine the MPXV strains circulating in Paraguay. Our genomic monitoring approach has produced the first 30 whole-genome sequences from Paraguay, all of which were identified under lineage IIb. Interestingly, our data suggest that the origin of the monkeypox virus in Paraguay at the beginning of 2022 can be traced back to Brazil. This introduction subsequently catalyzed further community spread that was further exacerbated by several independent introduction events as time progressed. These findings not only shed light on the transmission patterns of the virus but also highlight the pivotal role such insights play in sculpting effective response strategies and driving impactful public health measures. Furthermore, our findings strongly advocate intensified surveillance at international borders, ensuring swift detection and proactive countermeasures against potential outbreaks in the future.


Assuntos
Epidemias , Varíola dos Macacos , Humanos , Varíola dos Macacos/epidemiologia , Paraguai/epidemiologia , Genômica , Surtos de Doenças
7.
AIDS Res Hum Retroviruses ; 40(1): 37-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37312563

RESUMO

HIV-1 subtype C is associated with more than half of infections in southern Brazil and has been increasing in other regions of the country. In a previous study carried out in northeastern Brazil, we found a prevalence of 4.1% of subtype C. This work investigates the origin of subtype C in the state of Bahia based on five new viral sequences. The phylogenetic analysis showed that subtype C viruses found in Bahia descend from the main lineage that circulates in other Brazilian regions.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Filogenia , Infecções por HIV/epidemiologia , HIV-1/genética , Brasil/epidemiologia , Genótipo
8.
Front Public Health ; 11: 1195779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965526

RESUMO

Background: The COVID-19 pandemic had a major impact on indigenous populations. Understanding the viral dynamics within this population is essential to create targeted protection measures. Methods: A total of 204 SARS-CoV-2 positive samples collected between May 2020 and November 2021 from an indigenous area in Mato Grosso do Sul (MS), Midwestern Brazil, were screened. Samples were submitted to whole genome sequencing using the Nanopore sequencing platform. Clinical, demographic, and phylogenetic data were analyzed. Results: We found the co-circulation of six main SARS-CoV-2 lineages in the indigenous population, with the Zeta lineage being the most prevalent (27.66%), followed by B.1.1 (an ancestral strain) (20.21%), Gamma (14.36%) and Delta (13.83%). Other lineages represent 45.74% of the total. Our phylogenetic reconstruction indicates that multiple introduction events of different SARS-CoV-2 lineages occurred in the indigenous villages in MS. The estimated indigenous population mortality rate was 1.47%. Regarding the ethnicity of our cohort, 64.82% belong to the Guarani ethnicity, while 33.16% belong to the Terena ethnicity, with a slightly higher prevalence of males (53.43%) among females. Other ethnicities represent 2.01%. We also observed that almost all patients (89.55%) presented signs and symptoms related to COVID-19, being the most prevalent cough, fever, sore throat, and headache. Discussion: Our results revealed that multiple independent SARS-CoV-2 introduction events had occurred through time, probably due to indigenous mobility, since the villages studied here are close to urban areas in MS. The mortality rate was slightly below of the estimation for the state in the period studied, which we believe could be related to the small number of samples evaluated, the underreporting of cases and deaths among this population, and the inconsistency of secondary data available for this study. Conclusion: In this study, we showed the circulation of multiple SARS-CoV-2 variants in this population, which should be isolated and protected as they belong to the most fragile group due to their socioeconomic and cultural disparities. We reinforce the need for constant genomic surveillance to monitor and prevent the spread of new emerging viruses and to better understand the viral dynamics in these populations, making it possible to direct specific actions.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Feminino , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Brasil/epidemiologia , Pandemias , Filogenia , Genômica
9.
Microorganisms ; 11(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004755

RESUMO

The emergence of SARS-CoV-2 and the subsequent pandemic have prompted extensive diagnostic and clinical efforts to mitigate viral spread. However, these strategies have largely overlooked the presence of other respiratory viruses. Acute respiratory diseases in pediatric patients can be caused by a diverse range of viral agents, and metagenomics represents a powerful tool for their characterization. This study aimed to investigate the viral abundance in pediatric patients with acute respiratory symptoms who tested negative for SARS-CoV-2 during the Omicron pandemic wave. To achieve this, viral metagenomics and next-generation sequencing were employed on 96 nasopharyngeal swab samples, which were organized into 12 pools, with each pool consisting of eight individual samples. Metagenomic analysis revealed that the most prevalent viruses associated with acute disease in pediatric patients were respiratory syncytial virus (detected in all pools) and enteroviruses, which are known to cause significant morbidity and mortality in children. Additionally, clinically significant viruses such as mumps orthorubulavirus, human metapneumovirus, influenza A, and a wide array of human herpesviruses (1, 3-7) were identified. These findings highlight the extensive potential of viral metagenomics in identifying viruses other than SARS-CoV-2 that contribute to acute infections in children. Consequently, this methodology should garner clinical attention in terms of differential diagnosis and the development of public policies to address such conditions in the global pediatric population.

10.
Viruses ; 15(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38005887

RESUMO

We examined the asymptomatic rates of SARS-CoV-2 infection during the Delta and Omicron waves in the city of São Paulo. Nasopharyngeal swabs were collected at strategic points of the city (open-air markets, bus terminals, airports) for SARS-CoV-2 RNA testing. Applying the questionnaire, the symptomatic individuals were excluded, and only asymptomatic cases were analyzed. During the Delta wave, a total of 4315 samples were collected, whereas 2372 samples were collected during the first Omicron wave. The incidence of the asymptomatic SARS-CoV-2 infection was 0.6% during the Delta wave and 0.8% during the Omicron wave. No statistical differences were found in the threshold amplification cycle. However, there was a statistical difference observed in the sublineage distribution between asymptomatic and symptomatic individuals. Our study determined the incidence of asymptomatic infection by monitoring individuals who remained symptom-free, thereby providing a reliable evaluation of asymptomatic SARS-CoV-2 carriage. Our findings reveal a relatively low proportion of asymptomatic cases, which could be attributed to our rigorous monitoring protocol for the presence of clinical symptoms. Investigating asymptomatic infection rates is crucial to develop and implement effective disease control strategies.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Brasil/epidemiologia , Infecções Assintomáticas/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , Genômica
11.
Front Public Health ; 11: 1236384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670831

RESUMO

Free-ranging non-human primates (NHP) can live in anthropized areas or urban environments in close contact with human populations. This condition can enable the emergence and transmission of high-impact zoonotic pathogens. For the first time, we detected a coinfection of the yellow fever (YF) virus with Toxoplasma gondii in a free-ranging NHP in a highly urbanized area of a metropolis in Brazil. Specifically, we observed this coinfection in a black-tufted marmoset found dead and taken for a necropsy by the local health surveillance service. After conducting an epidemiological investigation, characterizing the pathological features, and performing molecular assays, we confirmed that the marmoset developed an acute fatal infection caused by T. gondii in coinfection with a new YF virus South American-1 sub-lineage. As a result, we have raised concerns about the public health implications of these findings and discussed the importance of diagnosis and surveillance of zoonotic agents in urbanized NHPs. As competent hosts of zoonotic diseases such as YF and environmental sentinels for toxoplasmosis, NHPs play a crucial role in the One Health framework to predict and prevent the emergence of dangerous human pathogens.


Assuntos
Coinfecção , Toxoplasmose , Animais , Humanos , Callithrix , Vírus da Febre Amarela , Zoonoses
12.
Viruses ; 15(9)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37766197

RESUMO

Since its discovery in early 1916, dengue fever, a common vector-borne illness in Brazil, has resulted in extensive urban outbreaks and poses a serious threat to the public's health. Understanding the dynamics of Dengue Virus (DENV) serotypes circulating in different regions of Brazil is essential for implementing effective disease control and prevention measures. In response to this urgent need, we conducted an on-site training program in genomic surveillance in collaboration with the Central Laboratory of Health and the Secretary of Health of the Mato Grosso do Sul state. This initiative resulted in the generation of 177 DENV genome sequences collected between May 2021 and May 2022, a period during which over 11,391 dengue fever cases were reported in the state. Through this approach, we were able to identify the co-circulation of two different dengue serotypes (DENV1 and DENV2) as well as the existence of diverse viral lineages within each genotype, suggesting that multiple introduction events of different viral strains occurred in the region. By integrating epidemiological data, our findings unveiled temporal fluctuations in the relative abundance of different serotypes throughout various epidemic seasons, highlighting the complex and changing dynamics of DENV transmission throughout time. These findings demonstrate the value of ongoing surveillance activities in tracking viral transmission patterns, monitoring viral evolution, and informing public health actions.


Assuntos
Dengue , Saúde Pública , Humanos , Brasil/epidemiologia , Genômica , Genótipo , Dengue/epidemiologia
13.
medRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732223

RESUMO

We report the first whole-genome sequences of Dengue Virus type I genotypes I and V from Uruguay, including the first cases ever reported in the country. Through timely genomic analysis, identification of these genotypes was possible, aiding in timely public health responses and intervention strategies to mitigate the impact of dengue outbreaks.

14.
Pathogens ; 12(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37764930

RESUMO

Fulminant hepatitis is a severe clinical disease characterized by a marked decline in liver function and encephalopathy. In a previous survey, using metagenomics in a group of 27 patients with this clinical condition, we observed an expressive quantity of reads of the Human pegivirus-1 (HPgV-1). Therefore, the objective of this study was to evaluate the frequency, molecular features, and HPgV-1 circulating genotypes in patients with fulminant hepatitis. After testing the collected plasma samples, we discovered twelve samples (44.4%) that were positive for HPgV-1 RNA (using both real-time and nested PCR). The positive samples presented a mean cycle threshold (Ct) of 28.5 (±7.3). Genotyping assignments revealed that all HPgV-1 positive samples belonged to the HPgV-1 genotype 2 (both subgenotypes 2A and 2B were identified). Although HPgV-1 is considered a commensal virus, little is known regarding its prevalence and genotypes in cases of fulminant hepatitis. More research is needed to understand whether HPgV-1 can be implicated in clinical disorders and infectious diseases.

15.
medRxiv ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37646000

RESUMO

Uruguay experienced its first Chikungunya virus outbreak in 2023, resulting in a significant burden to its healthcare system. We conducted analysis based on real-time genomic surveillance (30 novel whole genomes) to offer timely insights into recent local transmission dynamics and eco-epidemiological factors behind its emergence and spread in the country.

16.
Epidemiol Serv Saude ; 32(2): e2022614, 2023.
Artigo em Inglês, Português | MEDLINE | ID: mdl-37610938

RESUMO

MAIN RESULTS: Technology transfer can take place at large events, as long as safety protocols are strictly enforced. It is important to disseminate, at these events, the concepts of the Responsible Research and Innovation (RRI). Implications for services: Face-to-face training course is fundamental for training public health professionals. Technology transfer between research institutions and health services results in updating and improving health system performance. PERSPECTIVES: Based on the success of the reported technology transfer, a new module will be incorporated into the next edition of VEME (Panama 2022), entitled Virus Evolution to Public Health Policy Makers. The objective of this report was to describe the first face-to-face course aimed at training public health professionals in performing real-time genomic surveillance during the pandemic period. Experience report on a theoretical-practical course focusing on genomic research and surveillance, including mobile sequencing technologies, bioinformatics, phylogenetics and epidemiological modeling. There were 162 participants in the event and it was the first major face-to-face training course conducted during the COVID-19 epidemic in Brazil. No cases of SARS-CoV-2 infection was detected among the participants at the end of the event, suggesting the safety and effectiveness of all safety measures adopted. The results of this experience suggest that it is possible to conduct professional training safely during pandemics, as long as all safety protocols are followed.


Assuntos
COVID-19 , Educação Profissional em Saúde Pública , Transferência de Tecnologia , Humanos , Brasil/epidemiologia , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Educação Profissional em Saúde Pública/métodos
17.
Microorganisms ; 11(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513009

RESUMO

Antimicrobial resistance is increasing despite new treatments being employed, so novel strategies are required to ensure that bacterial infections remain treatable. Bacteriophages (phages; bacteria viruses) have the potential to be used as natural antimicrobial methods to control bacterial pathogens such as Salmonella spp. A Salmonella phage, Wara, was isolated from environmental water samples at the Subaé River Basin, Salvador de Bahia, Brazil. The basin has environmental impacts in its main watercourses arising from the dumping of domestic and industrial effluents and agricultural and anthropological activities. The phage genome sequence was determined by Oxford Nanopore Technologies (ONT) MinION and Illumina HiSeq sequencing, and assembly was carried out by Racon (MinION) and Unicycler (Illumina, Illumina + MinION). The genome was annotated and compared to other Salmonella phages using various bioinformatics approaches. MinION DNA sequencing combined with Racon assembly gave the best complete genome sequence. Phylogenetic analysis revealed that Wara is a member of the Tequintavirus genus. A lack of lysogeny genes, antimicrobial resistance, and virulence genes indicated that Wara has therapeutic and biocontrol potential against Salmonella species in healthcare and agriculture.

18.
Viruses ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37515290

RESUMO

Genomic surveillance has emerged as a crucial tool in monitoring and understanding the dynamics of viral variants during the COVID-19 pandemic. In the Midwest region of Brazil, Mato Grosso do Sul has faced a significant burden from the SARS-CoV-2 epidemic, with a total of 613,000 confirmed cases as of June 2023. In collaboration with the Central Public Health Laboratory in the capital city of Campo Grande, we conducted a portable whole-genome sequencing and phylodynamic analysis to investigate the circulation of the Omicron variant in the region. The study aimed to uncover the genomic landscape and provide valuable insights into the prevalence and transmission patterns of this highly transmissible variant. Our findings revealed an increase in the number of cases within the region during 2022, followed by a gradual decline as a result of the successful impact of the vaccination program together with the capacity of this unpredictable and very transmissible variant to quickly affect the proportion of susceptible population. Genomic data indicated multiple introduction events, suggesting that human mobility played a differential role in the variant's dispersion dynamics throughout the state. These findings emphasize the significance of implementing public health interventions to mitigate further spread and highlight the powerful role of genomic monitoring in promptly tracking and uncovering the circulation of viral strains. Together those results underscore the importance of proactive surveillance, rapid genomic sequencing, and data sharing to facilitate timely public health responses.


Assuntos
COVID-19 , Pandemias , Humanos , Brasil/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Genômica
19.
Nat Commun ; 14(1): 4413, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479700

RESUMO

The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Humanos , Vírus Chikungunya/genética , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Nucleotídeos
20.
Viruses ; 15(6)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37376575

RESUMO

Dengue virus (DENV) has been a major public health concern in Paraguay, with frequent outbreaks occurring since early 1988. Although control measures have been implemented, dengue remains a significant health threat in the country, and continued efforts are required for prevention and control. In response to that, in collaboration with the Central Public Health Laboratory in Asunción, we conducted a portable whole-genome sequencing and phylodynamic analysis to investigate DENV viral strains circulating in Paraguay over the past epidemics. Our genomic surveillance activities revealed the co-circulation of multiple DENV serotypes: DENV-1 genotype V, the emerging DENV-2 genotype III, BR4-L2 clade, and DENV-4 genotype II. Results additionally highlight the possible role of Brazil as a source for the international dispersion of different viral strains to other countries in the Americas emphasizing the need for increased surveillance across the borders, for the early detection and response to outbreaks. This, in turn, emphasizes the critical role of genomic surveillance in monitoring and understanding arbovirus transmission and persistence locally and over long distances.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Paraguai/epidemiologia , Estudos Retrospectivos , Filogenia , Sorogrupo , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...